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SUMMARY 
In this paper a memory integral viscoelastic equation is considered for simulating complex flows of non- 
Newtonian fluids by stream tube analysis. A formalism is developed to take into account co-deformational 
memory equations in a mapped computational domain where the transformed streamlines are parallel and straight. 
The particle-tracking problem is avoided. Evolution in time and related kinematic quantities involved with a K- 
BKZ integral constitutive model are easily taken into account in evaluating the stresses. Successive subdomains, 
the stream tubes, may be considered for computing the main flow in abrupt axisymmetric contractions from the 
wall to the central flow region. The ‘peripheral stream tube’ close to the duct wall is determined by developing a 
non-conventional modified Hermite element. A mixed formulation is adopted and the relevant non-linear 
equations are solved numerically by the Levenberg-Marquardt algorithm. Although the singularity at the section 
of contraction is not involved explicitly, the results obtained for the peripheral stream tube clearly show the 
singularity effects and the extent of the recirculating zone near the salient comer. The algorithm is stable even at 
high flow rates and provides satisfactory solutions when compared with similar calculations in the literature. 

KEY WORDS axisymmetric contraction; memory integral co-deformational equations; K-BKZ model; streamtube method; 
Levenberg-Marquardt algorithm, singularity effects 

1. INTRODUCTION 

Memory integral equations for viscoelastic fluids are generally assumed to be more realistic in 
predicting the rheological behaviour of polymer melts or solutions. The use of an integral form for the 
stress tensor U permits the introduction of various phenomenological parameters, which renders the 
formulation more attractive to describing complex flow situations in comparison with implicit 
differential constitutive equations. However, in numerical simulation the use of memory integral 
models may lead to delicate problems when evaluating the stress tensor, formally written as 

U ( t )  = F::‘,[K(z)], (1) 

where ff:zb, denotes a general functional of a kinematic tensor K(z) related to successive positions X 
of a material point X on its pathline at different times z I t. Indeed, computing stresses involves 
determining the particle’s kinematic history on a streamline, the points of which do not pass in general 
through the mesh nodes of the physical flow domain in the context of classical finite difference or finite 
element techniques (Figure 1). This problem, known as the ‘particle-tracking problem’, has been 
solved in two-dimensional flow situations by different approaches that correspond to plane or 
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Figure 1 .  Streamlines in typical meshes used in viscoelastic flow computations 

axisymmetric cases. Using general meshes for computing the flow of memory fluids such as Maxwell 
and Curtiss-Bird fluids, approximations for kinematic histories or drift function methods have been 
proposed by several authors'-3 for different constitutive equations. Dupont and Crochet! using a K- 
BKZ constitutive eq~at ion,~ proposed parametric equations involving a scalar parameter for each 
element in order to identify the pathline of a material point. Luo and Tanner6 presented a method in 
which the integrals of stresses of the same K-BKZ equation were evaluated using a finite element 
method for flows involving only open streamlines, which were used for building elements updated at 
each step of the numerical iterative process (Figure 1). Luo an Mitsoulis7 also adopted the same fluid 
and the same method for the entry flow in a circular abrupt contraction, setting up conventional finite 
elements to take into account the closed streamlines of the recirculations encountered in such a flow. 
The fact that, to our knowledge, few numerical simulations (see e.g. Reference 8) of memory integral 
viscoelastic 3D flows have been attempted up to the present time is due mainly to significant problems 
in defining accurate parametric equations for warping curves in order to evaluate kinematic quantities 
and stresses. 

A different approach for computing the flow of memory integral fluids was proposed by 
Papanastasiou et al.9 For the free surface extrusion problem they proposed a Protean co-ordinate 
system introduced by Duda and Vrentas'O and developed by A d a ~ h l . ' ~ ~ ' ~  In the Protean system one co- 
ordinate is the streamfunction. The work of Papanastasiou et al., in which a K-BKZ integral-type 
model was adopted, underlined the necessity of using a suitable co-ordinate system for fluids with 
memory. 

The method presented in this paper for evaluating the stress tensor in memory integral models is 
more closely related to that used with Protean co-ordinates. It refers to the flow analysis introduced 
some years ago by Clenn~nt , '~  the stream tube method, which may be applied to the study of two- or 
three-dimensional duct  flow^'"'^ and pure circulatory or vortex f l 0 ~ s . I ~  In this approach the 
unknowns of the problem are, in addition to the pressure p, a one-to-one transformation between the 
physical flow domain 9 (or a subdomain 9* of 9) and apansformed domain 9' (or 9*') where the 
mapped streamlines are parallel and straight (Figure 2). The mapped domain is used as the 
computational domain. Although this analysis involves considering only open streamlines, it was 
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Figure 2. Physical and mapped domains in stream tube analysis for flow in an abrupt contraction involving a recirculation zone 

proved that main flows in a duct involving recirculations can still be calculated with stream tube 
analysis, as was done in a recent numerical work by Clermont and de la Lande.I6 

In stream tube analysis the determination of particle evolution versus time is simplified, since the 
flow streamlines in the mapped computational domain are rectilinear: in steady 2D and 3D flow 
situations the mesh points in the computational domain correspond to the successive positions of a 
particle on its pathline and the particle-tracking problem is avoided. Previous numerical work involving 
memory integral equations was performed using the stream tube method for free surface” and 
complex duct flows16 in the two-dimensional case. In both studies a co-rotational modified Goddard- 
Miller fluid, which was proved to represent the rheological behaviour of a commercial Gedex 
polystyrene, was selected for the computations. The kinematic tensor used in this model is the rate-of- 
deformation tensor D, which is expressed in two-dimensional flow situations in terms of first and 
second derivatives of the mapping h c t i o n  to be determined. 

In this paper the K-BKZ memory integral model, which involves the respective co-deformational 
kinematic Cauchy and Finger tensors CC, and C; ’, is considered. Expressing these tensors in the stream 
tube formalism requires some analytical work, considered in recent studies by Clermont’* for general 
3D flows and Bkreaux’’ for the specific case of the K-BKZ model in 2D flows. 

The main goal in the present work is to propose, together with a formalism adapted to stream tube 
analysis, a numerical method which enables efficient computation of axisymmetric entry flows of 
fluids obeying co-deformational memory integral equations. As already pointed out in the literature, 
the K-BKZ integral-type model with several relaxation times selected in this study provides consistent 
predictions of the behaviour of various polymer solutions (see e.g. Reference 20) and melts (see e.g. 
Reference 5 )  in shear and elongation as well as in mixed flows. 

The general features of the stream tube method in relation to the co-rotational and co-deformational 
formalisms are examined in Section 2. The basic elements of the memory integral equation adopted in 
the numerical simulation of the present study are considered in Section 3. Section 4 presents the 
governing equations and unknowns in the context of stream tube analysis. An element is defined in 
Section 5 for approximating the mapping function to be determined in relation to numerical problems 
arising from the presence of the singularity at the salient corner of the contraction. The procedure for 
solving the governing equations is also presented. The numerical tests and results for entry flows of the 
K-BKZ fluid are presented and discussed in Section 6. Concluding remarks are given in Section 7. 

2. THE STREAM TUBE METHOD AND THE FORMALISM FOR MEMORY INTEGRAL 
CONSTITUTIVE EQUATIONS 

2.1. Basic elements of the stream tube method 

presented briefly here. 
The main features of the stream tube method, discussed more extensively e l ~ e w h e r e , ~ ~ ~ ’ ~  are 
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( 1 )  In the axisymmetric case the transformation T between the physical flow domain 9 and its 
mapped domain 9’ in which the transformed streamlines are parallel and straight may be expressed by 
the relations (Figure 2) 

r = f  (R,Z), e=o, z = z, (2) 
where ( r ,  0 , ~ )  and (R, 0,Z) denote the cylindrical variables in the physical and mapped domains 
respectively. The Jacobian of the transformation, assumed to be one-to-one, is given by the equation 

w-1 8 , 4 / W ,  @ I  Z)l =fm 4. (3 1 
This has to be non-zero, otherwise several values o f f  would be possible, corresponding to a 
recirculating flow zone. This case is not investigated in the present flow analysis: only open streamlines 
are obtained by numerical computation of the mapping function f defined by the basic equations (2). 
Domain 9’ is used as the computational domain. Consequently, the relevant numerical procedure in 
this paper concerns the calculation of streamlines in the main flow region of a duct as in Reference 16. 

related to the co-ordinates (R, 0,Z) may be 
expressed in terms of the orthnormal frame e; corresponding to the cylindrical variables (r,  8, z) by the 
equations 

(2) The respective natural and reciprocal bases b; and 

bl =A@, b2 = f @ ,  Z)e2, b3 = f i ( R ,  Z)el +e3, (4) 

3 XI = P/fL(R,  z)lel - If%, Z)/A(R, Z)le3, x2 = [ l / f ( R ,  Z)le2, x = e3. ( 5 )  

(3) The velocity vector V ( u ,  v,  w) which verifies the incompressibility condition from the stream 

u = -fL(R, Z)Q*(R)/[f(R, ZZfL(4 Z)Il v = 0,  w = - Q * ( R ) / [ f  (4 Z x ( R ,  z)]. (6) 

tube formulation, may be given in terms of the mapping function f by the equations 

In equations (6),  9* ( R )  stands for the R-derivative of the transformed function of the streamfunction 
Q(r,  z ) ,  given at the upstream section zo of the flow domain, where the kinematics are known, by the 
equation 

z = zo, R = r : Q*(R) = dQ(r ,  zo)/drl,,, = d (7) 

(4) On the mapped rectilinear pathlines of the transformed domain 9’ the evolution in time of a 
particle X which occupied positions X, (R, 0, Z,) and X , ( R ,  0, 2,) at respective times to (reference 
time related to the position 20 = zo of the particle) and z is given by the equation 

2.2. The use of the stream tube method in the co-rotational formalism 

In the co-rotational formalism the kinematic tensor W(z) of equation (1) is the rate-of-deformation 
tensor D(z). In order to satisfy the concept of objectivity for the constitutive equation, the tensor D(z) 
and the corresponding stress tensor are required to be written first in a co-rotational frame (at each time 
z), which is relatively simple to determine in the two-dimensional case (see e.g. References 16 and 18). 
The derivatives of the velocity with variables (R,Z) of the mapped domain 9’ are then evaluated in 
terms of the function f by derivative operators deduced from equations (2). Details on the use of the 
stream tube method and a co-rotational memory integral equation were presented in a previous work,I6 
as already pointed out. 
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2.3. The stream tube method in the co-defomational formalism 

In this formalism the basic kinematic quantities are the displacement functions. This generally 
means using the respective Cauchy and Finger objective strain tensors @,(z) and @;I(T) which are 
related to the deformation gradient tensor [Fh(z) (see e.g. Reference 21)  by the equations 

@,(T) =T F t ( T )  * Ft(z) ,  @;'(T) = [T[F,(T) . [F,(Z)]-', (9) 

lF,(z) = [ax,m/ax;]. (10) 

with 

In equation (9) the superscript 'T' denotes the transposition of a tensor. 
Starting from Adachi's work,11?12 it can be shownI8J9 that by using the vector positions X t  and X T  

and equations (4) and ( 5 )  related to the natural and reciprocal bases bi and for variables ( R ,  0, Z), 
the deformation gradient tensor may be expressed in the fiame corresponding to (R,  0, Z )  by the 
matrix 1 ,  ( 1 1 )  

0 
F,(z) = 0 

azT/aR, 0 dzT/dRt  

Z, 

" 
with 

az,/az, = w(R, Z , ) /w(R ,  ZT), aZT/aRt = w(R, 25) J, [ b ( R ,  Zg)/aR]dS/w(R, ZT). (12) 

Equations (2), (1 1) and (12) enables the Cauchy and Finger tensor components to be expressed in 
terms of the mapping function f and its derivatives. The deformation gradient tensor [F,(z) may be 
computed by using the natural and reciprocal bases given by equations (4) and (5 ) .  In cylindrical co- 
ordinates the matrix components may be written"3" as 
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It should be pointed out that in stream tube anlaysis the equations (13x17)  related to the mapped 
rectilinear streamlines 2” involve the property 

The Cauchy and Finger tensor components in the cylindrical basis ci may be evaluated in terms of 
the mapping function f and its derivatives using equations (9) and (13x18). 

3. THE MEMORY INTEGRAL EQUATION 

The memory integral equation adopted in the present study is the K-BKZ model already used in 
several numerical works4~6~8~9 on viscoelastic flow simulation. The equation was initially proposed by 
Papanastasiou et ai? in the form 

in which *(re, & I )  denotes a kinematic function expressed5 by the equation 

In equations (20) and (21), AP and up are the relaxation times and the relaxation modulus coefficients 
respectively, a and p are material constants and Zc and ZC-I denote the first invariants of the Cauchy- 
Green tensor Ct(z) and its inverse C;’(T) respectively. The model parameter values adopted in the 
present study, which were found to correlate satisfactorily with the experimental data of a low-density 
polyethylene (LDPE) in shear and elongation, are those already used in several simulations of complex 
flows (see e.g. References 6 and 9). The coefficients are reported in tables given for example by Luo 
and Mits~ul is .~ The following remarks are of interest with regard to the use of the present K-BKZ 
model in relation to previous numerical workI6 involving the stream tube method and the co-rotational 
memory integral Goddard-Miller equation. 

1. While the co-rotational memory integral involved parameter values fitting satisfactorily with data 
for a Gedex polystyrene with a single relaxation time, the co-deformational integral K-BKZ 
model adopted here for LDPE is expressed with eight relaxation times. The kinematic tensors 
involved in the model are given in terms of the mapping function f by more complicated 
expressions than those used for the rate-of-deformation tensor related to the co-rotational 
formalism. 

2. From a mathematical point of view the integrals considered in memory integral equations require 
definition of the numerical integration of a function F( t ,  T). Although in the case of the Goddard- 
Miller equationI6 the h c t i o n  may be written as 

such factorization of the integrands involved in the K-BKZ equation (13) is not possible. More 
complicated procedures for evaluating the stress tensor components are therefore needed for this 
co-deformational model. 



COMPLEX FLOWS OF NON-NEWTONIAN FLUIDS 377 

As will be seen in the next section, these considerations mean that approximating schemes must be 
defined for the functionfwhich are different from those previously adopted for numerical simulations 
with the co-rotational viscoelastic equation. 

4. GOVERNING EQUATIONS AND UNKNOWNS 

According to the basic equations defining the mapping function f; the numerical simulation involves 
computing the main flow region of the duct, as pointed out previously. Under isothermal conditions, 
only the momentum conservation equations are to be written. Ignoring body forces and inertia, these 
equations are given in differential form, using the function f and the spatial variables of the mapped 
domain 9', by 

- [l/f-aR, ~)13P(R, Z ) / d R  + [l/A(R, Z)ldT"(R, z ) / a R  
- [ f i ( R ,  Z)/fL(R, Z)]dT'3(R,  Z ) / d R  + dT'3(R, z)/az 
+ (T" - T22)(R, Z)/f(R, 2) = 0, 

[UX(R, z ) ~ ~ T ~ ~ ( R ,  Z)PR + I~;(R, ZMXR,  Z)IW, Z I P  

(23) 

- w, ZPZ - [m, z)/A(R, z ) I ~ T ~ ~ ( R ,  z ~ a ~  
+ 8T33(R, Z)/8Z + T"(R, Z)/f(R, 2) = 0, (24) 

where the superscripts of the stress tensor components TU are still related to r = 1,8  = 2 and z = 3. 
Writing equations (23) and (24) implies the use of the derivative operators 

a/ar  = P / A ( R , W w R ,  8/82 = -[f;(R,Z)/f~(R,Z)]d/aR + a/az. (25) 
The main flow region, simply connected with regard to the open streamlines, may be computed by 

considering successive stream tubes in the mapped computational domain 9' from the wall to the 
central flow region. This interesting property, which was discussed in previous papers involving the use 
of stream tube analysis (see e.g. References 16 and 22), entails taking into account the action of the 
complementary domain of the stream tube under consideration (Figure 3). In the axisymmetric case the 

zo z m a x  

section of contraction 

DOMAIN D' 
Figure 3. Mapped computational subdomains in 9' for air flow in an abrupt contraction 
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following scalar integral equation 
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must therefore be written: 

This equation corresponds to the global form of the momentum conservation law for a surface dR 
limiting a domain S Z ;  n denotes the outer unit normal vector to the surface 22 and 0 is the unit tensor. 
An extensive description of the procedure defined for the use of this equation was given elsewhere.16 
The quantities involved in equation (26) are expressed as functions of the variables (R,  Z )  of domain 
9l. 

To compute the flow field, a mixed system of unknowns is considered. This involves the primary 
unknowns of the problem, namely the transformation functionfand the pressurep, as well as the extra- 
stress tensor components Tq given by integral equations involving functions Xi(t,  z) related to the 
kinematic history and material properties of the fluid. According to the constitutive equation (20), 
these tensor components may be formally written as 

The stress components are evaluated at points of a mapped rectilinear streamline 9’ passing through 
the position X, (R ,  0, Z,) of the upstream Poiseuille flow section limiting the computational domain 
9’ (Figure 3). Assuming the existence of a fully developed flow at times t 5 to, the integrals of the 
form (27) are computed numerically by six-point Gauss-Laguerre formulae, provided that an 
approximating scheme for the functionf and its derivatives is given. Since evaluating the stress tensor 
involves determining kinematic expressions related to the function 1; the following remarks are of 
interest. 

1. Concerning the expressions for the mapping functionfand its derivatives: 
(a) for times z 5 to 5 t the functionfand its first derivatives are given by the simple equations 

(b) for times to 5 z 5 t the functionfand its derivatives are evaluated by approximating schemes 
in the computational flow domain 9‘. 

2. The spatial derivatives aZt/aZ7 and aZ,/aR, (z 5 t )  to be used in relation to the deformation 
gradient components (see equation (1 2)) may be expressed by the equations 

When restricting the computation to a stream tube &@ of the main flow region, the governing 
equations to be solved are 
(a) the dynamic equations (23) and (24) 
(b) the constitutive equations (27) 
(c) the simple boundary condition equations related to data concerning unknowns at the 
boundaries 
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(d) two boundary condition equations, of the same type as equation (26), concerning the action of 
the outer and inner complementary stream tubes;16 these equations may be considered as 
constraints for the set of governing equations. 

5. DISCRETIZING SCHEMES-ALGORITHM FOR SOLVING THE EQUATIONS 

5.1. Approximation of the unknowns 

The numerical procedure requires approximating the unknowns in the simple computational domain 
defined by a stream band L#' in the mapped domain 9' (Figure 3). The stream bands are divided into 
rectangular elements built on two rectilinear streamlines. The mesh is refined in the vicinity of the 
contraction section, as is usually the case. 

Previous numerical studies involving computation on successive stream tubes have shown that the 
'peripheral stream tube' close to the wall of the duct is the one entailing most numerical 
d i f f i c ~ l t i e s . ' ~ ~ ' ~ ~ ~ ~  For flow in all abrupt contraction this boundary is not explicitly taken into account 
because of the existence of secondary flows close to the wall: the limiting wall only provides known 
boundary values of the functionf: In previous work with the co-rotational memory integral equation 
the mapping functionf, assumed to be quadratic, was approximated in all the stream bands in 9', 
divided into local elements (el) as shown in Figure 4(a), by equations of the form 

i =  1 

where Qi(x,y)  are the six basic functions related to the nodal The node locations are also 
given in Figure 4(a). 

The element of type ( e l )  was proved to be inadequate with the K-BKZ model: while consistent 
results were obtained with the co-rotational Goddard-Miller equation, the use of these elements for the 
peripheral stream band with the co-deformational equation led to oscillations of the computed function 
f and changes in sign of the Jacobian of the transformation in the vicinity of the contraction section 
with a refined mesh. 

The element (e2) presented in this paper for interpolation of the functionfin the peripheral stream 

taf WALL (b) : i ! r *  ; * + q - c  - - -  - -  

C* 

D 

f4 - - -1- - - - 
I 

I 
A 

A, f2 D, f l  

@ A, D ( f, fd, fi) 
0 B*, C* ( f;. f;) 

0 B,C ( f )  

Figure 4. (a) Element of type (el) in a stream band. @) Element of type (e2) for peripheral stream band in 9' 
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band a' of 9' is a modified version of a Hermite element23 and is shown in Figure 4@). As can be 
seen, the known values o f f  are given at wall nodes B and C but are not specified at nodes A* and B* 
where the first spatial derivatives o f f  are involved. For points A and B the triplets (f,$, f i )  are 
considered. The function f may then be written with the use o f  local variables (t, q) as 

12 

In equation (3 1) the quantitiesr denote the values of the function f or those of its derivatives f; and 
f i .  The correspondence between the basic functions, the quantitiesq and the nodes of an element is 
presented in Table I. 

Table 1. Correspondence between geometric 
nodes, nodal values cf, af/at  and af /a l )  
and basic functions (Hl-Hlz) for the modified 
Hermite element 

Geometric 
nodes f a f l x  a f /% 

For the element (e2) the basic functions Hi may be written as 

HI(<, II) = (q2 - 1)[2q - 3(a* - 1)1/[8(3~* - 111 - (II - 1)/4 

+ t(t2 - 1){1 - (a* - 1)2(q + 1)/[4(3a* - 1)]}/4 

- (5/2){1 + (q + 1)*(2r] - 3a* - 1)/[4(3a* - l)]}, 

H3(<,  q) = 2(q2 - 1 ) [ 3 ~ * ~  - 2a*q - l)](t - 1)/[4(3a* - l)(a* + l)] 

- (a* - l)2(t2 - l) t(q + 1)/[8(3a* - l)], 

(32) 

(33) 

(34) 
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H7(<, q) = - (q2 - 1)[2q - 3(a* - 1)]/[8(3a* - I)] + (q + 1)/4 

- (a* + 1)2((r2 - 1)(q + 1)/[16(3a* - l)] 

- r(q + 1)2(2q - 3a' - 1)/[8(3a* - l)], (38) 

HS(t, ?) = - (V2 - 1)[21 - 3(a* - 1)]/[8(3a* - I)] + (q + 1)/4 
+ (a* + 1)2r((2 - 1)(q + 1)/[16(3a* - l)] 

+ r(q + 1)2(2q - 3a* - 1)/[8(3a* - l)] ,  (39) 

H12(<, ?) = (? - l)(? + 1l2(r + 1)/[2(3a* - l)(a* + I)] 
- ((q + l)(C2 - l)(a* - 1)/[4(3a* - I ) ] .  (43) 

In equations (32)-(43) the parameter a* (- 1 < a* < 1 , a*# 1 /3) denotes the distance between the 
(-axis and the segment B*C*. The features of element (e2) are similar to those of the classical two- 
dimensional Hermite element: 

(i) Co-continuity at the boundaries 5 = f l  and q = f l  

(ii) C'-continuity on the segments q = f l  of the element and at the geometrical nodes A, B*, C* 

(iii) C'-continuity on the boundaries [ = fl and at the geometrical nodes A and D for the partial 

Starting from properties related to the classical Hermite element (see e.g. Reference 23), it proved 
possible to evaluate the interpolation error e in the domain V, = (e2) of the local variables ({, q) for a 
h c t i o n  U to be approximated along the line ((,a)* where the nodes B*(-1, a*) and C*(l, a*) are 
located; only the nodal values 4' and 4' are associated with these nodes (Figure 4(b)). The error 
function 45, q) in V, may be estimated by means of the inequality 

and D for the partial derivative$. 

derivative fi. 

in which the quanitities R, S and Tare given by the relations 

(44) 

(45) 
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It may be observed that the error e(5, q )  is smaller when the parameter a* is close to - 1, which 
corresponds to the node positions of B* and C* shown in Figure 4(b). 

The first and second derivatives of the mapping functionfcan be obtained from derivatives of the 
basic functions 4. To compute the pressure p and tensor components TV, the four nodal values at 
points A, B*, C* and D of each element are chosen as unknowns. As in previous work,16 their 
derivatives in terms of R and Z are then evaluated on the rectangular mesh by using classical finite 
difference formulae. 

5.2. R e  computational problem-resolution algorithm 

While computational procedures are generally set up in such a way that the discretized governing 
equations of the problem define a closed set of equations, the context of computation on successive 
stream tubes involves consideration of supplementary equations such as the non-linear boundary 
condition equation (26). This problem was investigated in previous works (see e.g. References 16 and 
22) by means of optimization methods. The equations are written in the form of a problem (P) defined 
as 

(P) min {G(Y) : Y E R N } ,  (48) 

(49) 

corresponding to the set of equations 

x,(YI, Y2, . . . , Y N )  = 0, i =  1, 2, . . ., M ,  

of unknowns Y1, Yz,  . . . , YN. G is a quadratic function given by 

To solve the equations of problem (P), the Levenberg-Marquardt iterative algorithm24 was adopted. 
This proved to be solid and efficient for the non-linear problems involved in computing successive 
subdomains with the stream tube method.'6,22 This algorithm allows a solution Y* of (49) to be 
computed by a combination of two algorithms: 

(i) the Newton algorithm, which converges quadratically but requires a good initial estimate Yl0] of 

(ii) the gradient algorithm, which has a linear convergence but converges for a less accurate initial 

In order to compute the unknowns involved in the governing equations, the numerical procedure is 

the solution 

estimate. 

carried out by minimizing the quadratic function G defined by equation (50). 

6. NUMERICAL RESULTS 

The numerical results were obtained with an Apollo 425 workstation using double-precison 
variables. In relation to the multiple relaxation times of the K-BKZ constitutive equation adopted in the 
present work, the flow rate was associated with two flow parameters, also used in several other 
papers4l6>': 
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(i) the apparent shear rate r, defined in the downstream tube by 

r = 4 wl/r l ,  

where w1 denotes the average axial velocity in the downstream tube of radius rl 
(ii) the dimensionless number SR given by 

SR = [ N / ( ~ T ’ ~ ) ] ~ .  (52) 
In equation (52), iV1 denotes the first normal stress difference and the subscript ‘w’ indicates that the 

ratio is considered at the wall of the Poiseuille flow of the downstream tube. The evolution of the 
parameter SR versus the apparent shear rate r, shown in Figure 5, indicates a slow variation at high 
shear rates. This should be kept in mind when considering the numerical results expressed in terms of 
the dimensionless number SR. 

The numerical results are related to the peripheral stream tube of the main flow domain close to the 
wall. Although the vortex flow zone is not explicitly examined by the stream tube analysis, 
consideration of this stream tube makes it possible to emphasize the singularity effects due to the 
salient comer as in previous work with the Goddard-Miller fluid.I6 

The peripheral stream band in the mapped computational domain 9* involves a number of elements 
from 20 to 35, the size of which is reduced in the vicinity of the section of contraction in relation to the 
singularity effectes. In our calculations in the axisymmetric 4/1 contraction the respective upstream and 
downstream lengths L, and Ld were defined such that 

LJrI = 16, Ld/r1 = 100 for SR 5 1.7, 

(53) 100 < Ld/rl 5 250 for 1.7 5 SR 5 2.67. 

The upstream length L,, was the same as that adopted by Luo and Mitsoulis’ in similar conditions. 
However, the downstream length Ld required to ensure complete stress relaxation for the K-BKZ 
viscoelastic model was found to be greater than both that given by those authors and the one reported 
in our previous work with the single-integral viscoelastic Goddard-Miller equation.16 For the flow 
rates considered up to SR = 2.67 no convergence problems were encountered with the computational 
procedure. The convergence criterion, based on the Euclidean norm-of-error E related to the 
Levenberg-Marquardt procedure, was given by the equation 

a 

2.50 - R 

Figure 5 .  Dimensionless parameter SR as a function of apparent shear rate r 
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where i denotes the current iteration number and AG(Y)[il = G(Y)Iil - G(Y)[+ the function G(Y) 
being expressed by equation (50). The relative error E was generally found to be of the order of lo-*, 
associated with a function G(Y) of the order of lop6. An example of the evolution of G(Y) as a 
function of the number of iterations before convergence is shown in Figure 6. For all the cases 
considered, the number of iterations was found to be less than 25. 

Various tests were run in order to compare the accuracy measured by relative differences between 
the transformationf; the pressure and the stress components. Given the dimensionless number SR 
related to a flow rate, the mesh adopted was that leading to negligible differences in computing the 
unknowns. In the context of the stream tube method, solving the governing equations in a stream tube 
reduced the number of unknowns to 400 at the highest flow rates investigated. In contrast with 
numerical simulations of viscoelastic flow performed in the literature, the solution at a given flow rate 
did not require intermediate flow calculations at lower values of the parameter SR. This possibility is to 
be underlined in relation to 

(i) The discretization scheme adopted to compute the unknowns 

(ii) smaller relative differences between the problem variables in a stream band of 9* compared 

(iii) the efficiency and robustness of the Levenberg-Marquardt algorithm used for solving the 

As already pointed out in previous  work^,'^^^^ the existence of the transformation F for the main 
flow domain is related to the non-singular character of the Jacobian 6 of the one-to-one 
transformation. This made it necessary to consider peripheral stream tubes limited by a streamline 
9* starting at an original abscissa rf at the upstream Poiseuille flow section, defined such that 
(ro - rfU,)/ro 50.05 (ro is the upstream duct radius), otherwise divergence problems may arise. 

Figure 7 illustrates the computed limiting streamline 9* of the peripheral stream tube with the 
integral model for SR =1.65, 1.84,2.53 and 2.67. Although the calculations concerned a subdomain of 
the main flow region, the shape of the computed limiting streamlines clearly indicates the relative 
importance of the recirculating flow zone and the evolution of vortex flow near the salient comer of the 
contraction. Figure 8 shows an example for SR = 2.53 of consistent comparisons between the 
limiting streamline L?* in the 4/1 contraction determined by solving the equations in the peripheral 
stream tube and the streamline of the same origin upstream of the contraction determined by Luo and 
Mitsoulis’ under the same flow conditions with a finite element method involving the total flow 
domain. 

with those involved in a computational method involving the total flow domain 

equations. 

Figure 6. The function G to be minimized as a function of the number of iterations 
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The stress components along the limiting streamline 9* corresponding to S, =267  are shown in 
Figure 9(a) and (b). For all the stress components plotted, a peak may be observed in the curves in the 
vicinity of the contraction section, corresponding to the presence of the salient comer. As can be seen 
in Figure 9@), the model exhibits a much greater stress difference T33 - TI' than the stress difference 
TI1 - T22, which also relaxes more rapidly. The peak intensity is found to be of the same order of 
magnitude as. that illustrated by numerical results reported by Luo and Mit~oulis.~ 

The importance of singularity effects on the stress components is also illustrated in Figure 10, where 
the stress distributions TI3 are plotted at SR = 1.65, 2.53 and 2 6 7 .  As expected, the magnitude of the 
stress peaks increases with the dimensionless number SR. 

Computations were also performed for the axisymemtric 8/1 contraction. Results obtained at 
S, = 1.84 are plotted in Figures 11 and 12 for both 4/1 and 8/1 contractions. The computed limiting 
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Figure 7. Computed limiting streamlines Y* showing the evolution of recirculating flow zones at various &-values 
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Figure 8. Comparison for &=2.53 between a computed streamline in the peripheral stream tube and a streamline determined 
from a finite element method in the total flow domain by Luo and Mitsoulis' 

streamlines 9*, starting at the same relative distance r*/ro (ro is the radius of the upstream tube) are 
reported in Figure 11 and are found to coincide for the upstream sections close to the section of 
contraction. The stress peaks for the shear stress T13 (Figure 12(a)) and the stress difference T33 - TI1 
(Figure 12@)) along the first computed streamlines of the two contractions are found to be of the same 
order of magnitude. This result confirms the choice of the 411 contraction generally used in the 
literature for numerical simulation of viscoelastic flow. 

TI3  

7. I r ,  
-6e.+5 ' 1 

0 10 20 30 40 50 

- 1 ,Oe+6 ' I 

0 10 20 30 40 50 

Figure 9. Stress distribution along the first computed streamline for SR = 2.67: (a) shear stress TI3; (b) stress differences 
T33 - TI1 and - T 2 2  
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Figure 10. Stress component TI3 for SR = 1.65, 2.53 and 2.67 

7. CONCLUDING REMAKKS 

In this study the flow of a realistic memory integral fluid has been computed in abrupt axisymmetric 
4/1 and 8/1 contractions. In the context of stream tube analysis the co-deformational K-BKZ model 
could be investigated in a simple way: the expressions for the kinematic tensors and the integral 
operators may be defined in a computational domain where the transformed lines of open streamlines 
are rectilinear and parallel, thus avoiding the problem of particle tracking. The cornplexity of the K- 
BKZ rheological model selected for computing the transformation function fled to a modified Hermite 
element being proposed. In relation to the multiple relaxation times of the constitutive equation, the 
lengths required for fully-developed Poiseuille flow to be obtained downstream of the contraction 
section were found to be greater than those indicated by using the single-integral Goddard-Miller 
equation previously considered in a 4/1 contraction.'6 As in the latter case, the approximating scheme 
and the Levenberg-Marquardt resolution algorithm led to consistent and stable numerical results even 
at high flow rates. By considering a peripheral stream-tube in the main flow region of the contraction, it 
was possible to evaluate wall effects on the stresses, even though the singularity at the salient comer 
was not explicitly taken into account when using the stream-tube method. The numerical results are 
satisfactory with regard to computed solutions in the literature, which require a resolution in the total 
flow domain. 

r l r  

8/1 CONTRACTION 
l o t  

Y 

0 10 20 30 40 so 60 

Figure 1 1 .  Comparisons of results for 411 and 8/1 axisymmetric contraction geometries, SR =1.84: limited streamlines 
originating at the same relative abscissae at the upstream Poiseuille section 
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Figure 12. Comparisons of results for 4/1 and 8/1 misymmetric contraction geometries, S, = 1.84: (a) stress component T" 
along the first computed streamlines; (a) stress difference T33 - TI1 along the first computed streamlines 

As pointed out previously, few theoretical results are available in the literature concerning the 
computation of complex flows with memory-integral equations. At the present time it is only possible 
to propose tentative explanations for the convergence of our method when using stream-tube analysis, 
as was done in a recent work.I6 

The present results confirm that it is possible to study complex flows with or without recirculation 
regions using the stream-tube method for various memory-type integral equations. The numerical 
solutions are obtained, with a very limited number of unknowns, using a computational algorithm 
which proved to be robust and efficient. 
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